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This tutorial is mainly devoted to the application of derivatives.

1. Suppose f : [a,b] — R is continuous and is differentiable on (a, b).

(a) State the mean value theorem.

(b) (Optional) It should be noted that the condition that f is real valued is nec-

essary. For a counterexample, consider the function f : [0,27] — C defined by
f(0) :=¢e?. Then f(0) = f(2), but there is no @ € (0, 27) such that f’(9) = 0.

(¢) Suppose f'(c) > 0 for any ¢ € (a,b). Then f is monotonically increasing on

[a, b].

(d) Conversely, suppose f'(c) < 0 for some ¢ € (a,b). Then we have shown last

time that f is not increasing on [a, b].

(e) Suppose now f'(c) > 0 for any ¢ € (a,b). Then show that f is strictly

increasing on [a, b|.

(f) However, this time the converse is not true. Provide a counterexample.

Using differentiation and monotonicity, compare the values of e™ and 7¢ without
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a calculator.

Show that |sin(x) — sin(y)| < |x — y| for all z,y € R.

Show that cos(z) > 1 — %2 for all x > 0.

Show that for z > 1, &=L < Inz <z — 1.

T

Show that for any 0 < a < b, there is ¢ € (a, b) such that \/c = M

Let f : R — R be differentiable, and that |f'(x)| < 50 for all z € R. Given
that f(1997) = 10000, compute the following value:

inf{ f(2047) : all f’s satisfying the above conditions}

and provide an example such that a minimum can be attained.

3. Let f: [a,b] — R be continuous and is differentiable on (a,b).

(a) Show that if f attains a local maximum (minimum) at ¢ € (a,b), then we must

have f’(c¢) = 0. However, give an example to show that the converse is false.

(b) Let a,b be two positive numbers and p > 1 be a real number. Show that

a? + b < (a+b)P < 2071 (aP 4 bP)



(c¢) (Young’s inequality) Let a, b be two positive numbers and p,q > 1 be two real
numbers satisfying 210 + % = 1. Show that
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(a) State the L’Hospital’s Rule.

(b) Compute the limit lim, o+ z*.

(c) Note that the converse of L’Hospital’s Rule fails in the sense of following ex-
ample:

Consider f(z) := z*sin(2) for z # 0 and f(0) := 0, g(z) := sinz. Then

lim, o f(x) = 0 = lim,_,0 g(x) = 0 so this is an indeterminate form. Note that

mM:O,

20 g(x)
but this limit cannot be evaluated using LL’'Hospital Rule, since we have

lim S'@)

does not exist
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(d) Show by L’Hospital Rule that whenever f”(x) exists and is continuous in R,

we have
- flz+t)+ f(tﬂg—t) —2f(x)

= f"(z)

This is useful because it provides us a way to represent higher order derivatives
with no reference to intermediate derivatives.

Give an example such that the limit on the left and side exists but f is not
even continuous at x.

Remarks: Let a,b be two positive numbers and p,q > 1 be two real numbers
satisfying 110 + 5 = 1. Show that
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Solution:

An equivalent statement to the one we want to prove is the following:
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(divide both sides by b?).

Let t = Z—qp Then tr = a1, Where we have used the assumption that % + % = 1.

We want to show that
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Let f(t) = tr — %t. Then f(1) =1 —% = %. If we can show that this is the maximum
of f(t) when ¢t > 0, we are done.
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When ¢ < 1 we see that f/(t) > 0 and similarly when ¢ > 1, we see that f’(t) < 0.
Thus, % is a local max of f(t) attained at ¢ = 1. However, this is the unique critical
point of f and we see that f decreases when ¢t moves away from 1. Hence f attains
a global maximum at ¢ = 1, and hence
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Now substituting back in ¢t = £ we get Young’s Inequality to come out with some

ba
algebraic manipulations.



